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Periodic Orbits and Equilibria in Glass Models
for Gene Regulatory Networks

Igor Zinovik, Yury Chebiryak, Daniel Kroening

Abstract—Glass models are frequently used to model gene
regulatory networks. A distinct feature of the Glass model is
that its dynamics can be formalized as paths through multi-
dimensional binary hypercubes. In this paper, we report a broad
range of results about Glass models that have been obtained by
computing the binary codes that correspond to the hypercube
paths. Specifically, we propose algorithmic methods for the
synthesis of specific Glass networks based on these codes. In
contrast to existing work, bi-periodic networks and networks
possessing both stable equilibria and periodic trajectories are
considered. The robustness of the attractor is also addressed,
which gives rise to hypercube paths with non-dominated nodes
and double coils. These paths correspond to novel combinatorial
problems, for which initial experimental results are presented.
Finally, a classification of Glass networks with respect to their
corresponding gene interaction graphs for three genes is pre-
sented.

Index Terms—snake-in-the-box codes, circuit codes, gene reg-
ulatory networks, wiring diagram, induced cycle, hypercube,
dominating codes

I. INTRODUCTION

ANALYSIS of the dynamics and regulation of gene ex-
pressions has become one of the most important areas

in Systems Biology. Microarray chip techniques generate
an endless stream of data, which can shed light on these
cell dynamics at the molecular level, a task that requires
appropriate analysis algorithms. The complexity of genetic
regulatory networks requires formal models and automated
analysis algorithms.

The state-of-the-art models for the regulation of gene ex-
pressions include Bayesian networks, Boolean networks, non-
linear ordinary differential equations, and piecewise-linear
differential equations. The origin of many of these models can
be traced back to the work of R. Thomas and S. Kauffman,
who suggested several approaches for the formalization of
regulatory networks as dynamic systems evolving over time.
Extensive reviews of modeling and simulation of genetic
networks can be found in [3], [4].

We focus on models that utilize differential equation sys-
tems, as they are based on a well-developed formalism for the
chemical kinetics. These models capture the concentrations
of cell proteins as functions of time. We furthermore focus
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on a special class of piecewise-linear differential equations
(PLDE), which was proposed by Glass and Kauffman as an
approximative model for the network dynamics in the context
of gene regulation [5], [6]. Glass PLDE are not intended to
model the chemical kinetics of the proteins precisely; they
capture only the basics of the chemical reactions and represent
the dynamics of gene expressions qualitatively. In return, the
relative simplicity of the model enables analytical results,
which elucidate many properties of the gene regulatory system.

This style of modeling exploits a distinctive feature of gene
regulatory systems: the interactions are characterized by a
very localized coupling of the state variables, unlike complex
couplings found in control and electronic circuit problems.
The models are formulated as hybrid systems in which the
switch-like behavior of genes is approximated by discrete
steps, while the other state variables still change continuously
over time. These models have been used for the analysis
of gene regulatory networks [7], [8], [9], [10] and neural
networks [11], [12].

A distinct feature of the Glass model is that its dynamics
can be described using paths through multi-dimensional binary
hypercubes, that is, binary codes. This embeds reasoning about
Glass models into the rich context of information theory.
The scope of this paper is the development of computational
methods for the analysis of the Glass PLDE based on an
analysis of these codes, and their application for reasoning
about the features of the model that are biologically relevant.

Contribution
The core contribution of this paper is an analytical frame-

work for Glass PLDE that is based on the analysis of
codes on binary hypercubes. The hypercube codes are com-
puted by means of modern propositional satisfiability (SAT)
solvers [13], [14]. The utility of our framework is demon-
strated by three results:

1) In most of the existing literature, the discussion of the
dynamics of Glass PLDE is restricted to either the case
of a single stable periodic orbit or multiple equilibria.
As our first contribution, we address instances of Glass
networks of two types: a) with stable bi-periodicity
and b) with co-existent equilibrium and stable periodic
trajectory. Our reduction to hypercube paths enabled
a full classification of the six-dimensional networks
with a cyclic attractor with respect to the number of
equilibrium states co-existent with the attractor. We have
also synthesized instances of all networks with double
attractors up to dimension seven and present new upper
bounds on the total length of the attractors.
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2) In contrast to the models with continuous ODE, the
wiring schemes of PLDE and their connection to the
system dynamics have not been studied systematically.
We have extended our SAT-based approach to the con-
struction of Glass networks that correspond to a given
wiring scheme. We also present a classification of the
transition diagrams of the networks with respect to
the wiring schemes of the models. To the best of our
knowledge, it is the first classification of this kind for
the Glass PLDE.

3) Sufficient conditions for periodic orbits in Glass net-
works require the computation of eigenvalues and eigen-
vectors of the matrix that specifies the Poincaré return
map of the phase flow [15]. Based on those criteria, we
have developed an algebraic method for the synthesis of
Glass networks with periodic orbits along given cycles
in the transition diagram. As an exemplar, we construct
a set of three-dimensional Glass networks with periodic
orbits for the given transition diagrams. Finally, we
suggest two conjectures about the transition diagrams,
which can be seen as colloraries of conjectures for ODE
systems [16].

We emphasize that the connection between the cyclic codes
and the Glass PLDE is independent of the specific way the
codes are obtained. In particular, our exhaustive computation
is likely not sufficient for many biological systems, which can
easily contain hundreds of genes. A promising direction is
therefore the construction of longer codes (or proofs of the
non-existence of specific longer codes) by means of recursion
schemes, e.g., those described by Tanner graphs [17], [18].

Outline

We begin with a short, formal introduction into the Glass
PLDE model. In Sec. III, we discuss Glass networks that are
appropriate to model cell division. The corresponding hyper-
cube paths give rise to two novel combinatorial problems. In
Sec. IV, we discuss wiring diagrams for Glass PLDE, and
examine conjectures for models with continuous ODE in this
context. In Sec. V, we suggest an algebraic method for the
construction of Glass PLDE with periodic orbits that avoids
the complications connected with numerical methods.

Related Work

Various approaches to the search for the equilibrium states
in a variety of gene regulatory networks have been presented in
the literature. In PLDE systems, the search for the equilibrium
states and for periodic trajectories in the models of networks
is known to be computationally demanding due to the combi-
natorial explosion of the size of the search space [19]. In case
of PLDE with equilibrium states, a scalable search algorithm
has been proposed recently by de Jong and Page [20]. Their
method reduces the search to a first-order-logic satisfiability
problem and relies on the heuristics implemented in the state-
of-the-art solvers for satisfiability modulo theories (SMT).

The existing efforts to deduce fully defined dynamic models
of gene regulatory systems are limited by the lack of ex-
perimental data on the kinetic constants of the biochemical

reactions. Nevertheless, the models can be used to infer
qualitative information about the interaction of the genes.
Interaction is one of the most important properties of gene
regulatory systems and is usually presented in the form of
a wiring scheme. A wiring scheme is a directed graph that
specifies inhibiting and activating interactions between the
genes. In Systems Biology, the connection between qualitative
dynamics of ODE-based models and their wiring schemes has
been a research focus since the pioneering work of Thomas
and Kauffman [21]. The results have been summarized as
conjectures that link the equilibria and the periodic behavior
of autonomous ODE to inhibiting and activating patterns of
wiring schemes [16].

II. AN INTRODUCTION TO THE GLASS PLDE MODEL

This section provides a brief introduction into the Glass
PLDE Model, its applications in Systems Biology, and ex-
plains the connection to cyclic binary codes. Table I contains
a glossary with the most important terms.

A. Glass PLDE and Their Dynamics

The Glass PLDE Model [15] tracks the concentration of
the products of n genes. We denote the concentration of the
product of gene i by xi. The switch-like behavior of genes is
modeled with the help of thresholds for these concentrations,
which induces a partitioning of the PLDE phase space into a
set of n-dimensional boxes. The dynamics of the system are
given by a separate ODE for each of the boxes:

ẋi = µi − γixi for 1 ≤ i ≤ n
where µi is a constant production rate and γi is the rate of
decay of protein i.

If the model of the gene activity is restricted to on/off
expressions and the decay rates are identical for all reactions,
the PLDE system is called a Glass model. Using appropriate
scaling of the variables, the Glass PLDE can be transformed
into the system

ẏi = Fi(ỹ1, . . . , ỹn)− yi for 1 ≤ i ≤ n,
where ỹi = 0 if yi < 0 and ỹi = 1 if yi > 0 [15]. These
equations describe a network in which all thresholds are equal
to 0 and the decay rate is 1. The partitioning by the thresholds
coincides with the orthants Ok, k ∈ {1, 2, 3, . . . , 2n} of the
phase space.

The trajectory of the PLDE in each partition is always
a straight line; the flow in orthant Ok is defined by its
focal point f (k)= (f (k)

1 , f
(k)
2 , . . . , f

(k)
n ) ∈ Rn where f (k)

i =
Fi(ỹ1, ỹ2, . . . , ỹn)|Ok

. Thus, the Glass network can be fully
specified by a choice of focal points f (1), . . . ,f (2n). Fig-
ure 1 illustrates a phase flow with two trajectories in a two-
dimensional Glass network.

The state transition diagram is an over-approximation of
the phase flow. It is depicted by an n-dimensional cube with
directed edges. Each orthant of the phase space is mapped
to a node of the n-cube, and each common boundary of the
orthants corresponds to an edge of the cube. This edge is
directed according to the direction of the phase flow across
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TABLE I
GLOSSARY OF TERMS

Phase space An n-dimensional (locally compact and metric) space that is defined by all possible valuations of the
functions that satisfy the ODE system is called the phase space of the system. In the Glass model, the
phase space represents the space of all possible values of concentrations of the proteins regulated by the
gene network.

Phase space trajectory (orbit) A set of points of the phase space that represent valuations of the solution functions for a specified time
interval with a given initial point is called the phase trajectory. In the Glass model, the trajectory depicts
the dynamics of the network protein concentrations over a given time interval starting from an initial
state.

Phase flow A set of phase trajectories that originate in a subspace of the phase space of the system. Alternatively, the
term refers to a parametric transformation of the phase space, mapping it to itself where the parameter
is a time instant. In the Glass model, the phase flow can be represented as a path on hypercube; the path
defines a sequence of valuations of the gene expressions where the expressions are given as a binary
labeling of the hypercube nodes.

Attractor A phase trajectory that serves as an attracting set for the trajectories originating in a vicinity of
the attractor. Single-point attractors are called equilibrium points of the system. In the Glass model,
equilibrium points represent stable states of the gene network where gene expressions remain constant
over time.

Periodic orbit (trajectory) A closed-loop phase trajectory corresponding to a periodic solution of the system. Glass introduced the
term cyclic attractor for periodic attractors with an extended basin of attraction. They simulate stable
periodic biological processes such as cell division, where protein concentrations and gene expressions
are periodic functions of time.

Multiperiodicity The property of ODE systems of possessing more than one periodic orbit. In the biological context, such
systems serve as models of the gene networks with the potential to regulate more than one cell division
pattern.
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Fig. 1. A 2D phase flow.
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Fig. 2. A 3D transition diagram.

the boundary [22]. The state transition diagram for a three-
dimensional Glass network is shown in Fig. 2.

The nodes of the n-cube are labeled by vectors of n binary
variables (ỹ1, ỹ2, . . . , ỹn), which define a valuation of the
network interaction functions Fi. Periodic trajectories of a
network correspond to closed cycles in the transition graph
(as an example, consider the thick path in Fig. 2). This
connection enables reasoning about the phase flow in the

Glass networks by examining the set of paths on the n-cube,
a problem of independent importance in coding theory. In
particular, the existance of a cycle in the transition diagram
is a necessary condition for the existence of periodic orbits in
Glass networks.

B. Cyclic Attactors

The global phase flow in Glass networks can be quite
complex. Oscillations towards equilibrium states, cycles and
limit cycles may occur when the linear parts of the trajectories
are connected continuously over sequences of orthants [22],
[23], [15], [19]. Numerical simulations [22], [24] indicate that
for dimensions greater than 4, Glass networks may exhibit
aperiodic and chaotic behavior.

Studies of the periodic solutions for Glass models show
that there are networks that possess a special type of stable
limit cycles: the flow between the orthants along these cycles
is unambiguous, i.e., for each orthant along the cycle, all
trajectories must go to the same successor.1 Networks with
stable cycles of this kind are called networks with cyclic
attractors [22]. We formalize this concept as a property of
the state transition diagram.

Definition 1 (Cyclic Attractor): A cycle in the state transi-
tion diagram is called a cyclic attractor if a) it is a chord-free
simple cycle in the n-cube2, and b) all edges adjacent to the
cycle are directed towards the cycle nodes.
As an example, the cycle shown in Fig. 2 is the cyclic attractor.

In information theory, an attractor is known as cyclic snake-
in-the-box code in a hypercube [25]. The search for snakes
is motivated by the theory of error-correcting codes (as the
vertices of a solution to the snake or coil in the box problems

1In other words, the basin of attraction of the periodic trajectory is
composed of all orthants spanned by the trajectory.

2Every edge in the graph that joins two vertices of the cycle is an edge of
this cycle.
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can be used as a Gray code that can detect single-bit errors).
Such a code can also be seen as an instance of a circuit code
of spread 2 (circuit codes are useful for correcting and limiting
errors in analog-to-digital conversion, see [26], [27]).

III. GLASS NETWORKS WITH COMPLEX ATTRACTING
SETS

A. Glass Networks for Cell Division

Models for gene regulatory networks with equilibrium states
and stable limit cycles are of special interest in Systems
Biology, as these models simulate cell differentiation processes
and explain the variability of cell types [21], [28]. Cell
division cycles require models with periodic orbits. A normal
development of the cell division should eventually stop with
a tissue consisting of a finite number of cells, thus suggesting
that the model has to have multiple stable (equilibrium) states
as well.

We use the vulval development of C. elegans as an example.
This development process exhibits a series of cell divisions
with 22 nuclei finally formed. The cell division process reveals
dynamics of a complex reactive system that includes at least
four different molecular signaling pathways [29].

We discuss the implications of these observations on the
corresponding Glass model. The state of each of the four
signaling pathways is described by valuation of a Boolean
variable, and the transition diagram is a four-dimensional cube.
The diagram has to contain both a cyclic attractor (representing
the switching of gene expressions during the cycles of cell
division) and a node that specifies the final state of the system.
All edges of this final node have to be directed inwards to
ensure that the phase flow has a stable equilibrium in the
corresponding orthant of the phase space of the Glass PLDE.

We formalize the existence of a stable equilibrium as a
property of the state transition diagram. Observe that the
Hamming distance between the equilibrium node and the
nodes of the cyclic attractors has to be greater than one.3 We
say that such a node is non-dominated or shunned by the
cycle [2]. A formal definition of this property follows.

Definition 2: The cycle I0, . . . , IL−1 shuns node W of the
n-cube if W is not adjacent to any node of the cycle:

∀j ∈ {0, . . . , L− 1}. dn
H(Ij ,W ) > 1 , (1)

where dn
H(a, b) denotes the Hamming distance between nodes

a and b of the n-cube.
An example of a four-dimensional transition diagram with

a cyclic attractor and an equilibrium node is given in Fig. 3.
The orthants for the focal points of the PLDE are defined by
the orientation of the diagram edges. A way to ensure the
existence of a periodic orbit is to require focal coordinates of
1 or −1 [30].4

3Otherwise, the orientation of at least one of the edges of the equilibrium
node will be inconsistent with the definition of a cyclic attractor (Def. 1).

4The Glass networks with such focal points are called Boolean Glass
networks.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Fig. 3. An induced cycle in the 4-cube. The cycle shuns node 1101.

Non-dominated nodes in state transition diagrams have
further implications on the dynamics of the Glass PLDE.5 The
classification of the cyclic attractors with respect to the number
of non-dominated nodes is therefore highly desirable.

Propositional SAT encoding of induced cycles: We em-
ploy a propositional satisfiability (SAT) solver in order to
obtain the required codes. We provide a formalization of
the encoding.6 We use n · L Boolean variables Ij [k], where
0 ≤ j < L and 0 ≤ k < n, to encode the coordinates of an
induced cycle of length L in the n-cube. The variable Ij [k]
denotes the k-th coordinate of the j-th node. In order to form
a cycle in an n-cube, consecutive nodes of the sequence must
have Hamming distance 1, including the last and the first:

ϕcycle :=
(∧L−2

i=0
dn

H(Ii, Ii+1) = 1
)

∧ dn
H(IL−1, I0) = 1 .

The Hamming distance dH is encoded efficiently using
once-twice chains, as described in [31]. In brief, a once-twice
chain identifies differences between two code words up to
some position j based on (i) comparing them at position j, and
(ii) recursively comparing their prefixes up to position j − 1.

To make the cycle induced, we eliminate chords as follows:

ϕchord-free :=
∧

0 ≤ i < j < L,
dn

C(i, j) ≥ 2

dn
H(Ii, Ij) ≥ 2 ,

where dn
C(k,m) = min{|k −m|, L− |k −m|} .

This also ensures that the nodes along the cycle are pairwise
distinct. In practice, the formula ϕchord-free can be optimized

5For example, the presence of nodes non-dominated by the cycle also indi-
cates that the phase flow along the attractor is robust to arbitrary perturbations
of the coefficients that define the equations in the orthant corresponding to the
node. This robustness implies that the periodic behavior of the gene network
will not be affected by the (likely unknown) protein production rate in any
state corresponding to the non-dominated node.

6The details of the setup of the propositional SAT solver are beyond the
scope of this article. We refer the interested reader to [2].
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TABLE II
THE NUMBER OF NON-DOMINATED NODES FOR THE LONGEST CYCLIC

ATTRACTORS

dimension n max. length L #non-dominated nodes
3 6 0
4 8 {0, 1}
5 14 0
6 26 0
7 48 {0, 1, 2, 3, ?}

by eliminating half of its clauses, using an argument presented
in [32].

The conjunction of these constraints is an encoding of
induced cycles:

ϕIC := ϕcycle ∧ ϕchord-free .

We encode the property that a cycle I0 . . . IL−1 shuns nodes
u0, . . . , uS−1 by requiring the distance of the nodes to the
cycle to be at least 2:

ϕshunned :=
∧S−1

i=0

∧L−1

j=0
dn

H(ui, Ij) ≥ 2 .

We combine this with the condition that the nodes are distinct,

ϕdistinct :=
∧

0≤i<j<S
dn

H(ui, uj) ≥ 1 ,

to obtain an encoding of induced cycles with at least S
shunned nodes:

ϕICS := ϕIC ∧ ϕshunned ∧ ϕdistinct . (2)

Every solution of equation (2) corresponds to an induced
cycle of length L in the n-cube with at least S shunned nodes.
We aim at the cycles with a maximum S. We obtain these
codes by starting with cube-dominating induced cycles, i.e.,
with S = 0, and increasing S until the SAT solver reports
unsatisfiability.7

The results for the known instances of attractors in dimen-
sion 7 indicate that some cyclic attractors with the longest
period may shun up to three nodes. Table II summarizes our
results for the longest attractors and the attractors with a
maximum number of non-dominated nodes. The partitioning
of the equivalence classes of cyclic attractors with respect to
the number of non-dominated nodes they admit is presented
in Table III and Fig. 4.

In Figure 4, we also report the results of this classification
for two new equivalence classes of six-dimensional transition
diagrams. We have previously reported a classification of the
induced cycles of length 16, which exceeds the maximal
length of the induced cycles in cubes of dimension five [33].
However, it is possible to construct induced cycles shorter the
maximal length in previous dimensions, which nevertheless
cannot be found in the cubes of lower dimensions. The mini-
mum length of such a cycle in a cube of dimension n cannot be
less than 2n, because the cycle has to traverse all dimensions
of the cube. In dimensions greater than 6, an example of

7As the range of values for S for which (2) is satisfiable is contiguous, a
binary search strategy is also possible, using a heuristically determined initial
value for S.

TABLE III
THE NUMBER OF EQUIVALENCE CLASSES OF CYCLIC ATTRACTORS

dimension n length L #non-dominated nodes #cycles
5 10 0 0

1 0
2 3
3 3
4 3
5 0
6 1

5 12 0 2
1 0
2 2
3 0
4 1

5 14 0 3
6 12 16 16

17 10
18 15
19 9
20 5
21 1
22 0
23 0
24 1

6 14 10 16
11 13
12 25
13 26
14 30
15 12
16 13
17 1
18 1

6 16 0 1
1 0
2 1
3 1
4 13
5 14
6 44
7 60
8 108
9 105

10 111
11 53
12 34
13 7
14 8
15 1
16 2

such a cycle can be given by the following sequence of node
coordinates switching along the cycle: (1, . . . , n, 1 . . . , n).8

B. Multiperiodic Glass Networks

An important feature of models of gene networks with
chaotic dynamics is multiperiodicity [16]. The transition dia-
grams of such multiperiodic systems have to contain multiple
cycles. If a gene network exhibits dynamics with multiple
stable periodic orbits, a Glass PLDE with multiple cyclic

8It is easy to see that a cycle with such coordinate sequence of length
L = 2n is indeed an induced cycle, as the sequence satisfies the criterium
given in [6]: 1) Each coordinate in the sequence must appear an even number
of times. 2) For any sequence of length shorter than L, at least one coordinate
must appear an odd number of times. 3) Every sequence of consecutive digits
of length I , where I is an odd integer 3 ≤ I ≤ L− 3, must contain at least
3 coordinates that appear an odd number of times.
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Fig. 4. The classification of cyclic attractors in 6-dimensional hypercubes
with a given length L with respect to the number of non-dominated nodes

attractors may be a suitable model. The transition diagrams of
these Glass networks have to possess multiple induced cycles.

We have extended our propositional encoding of single in-
duced cycles [1], [33] in order to perform a search for multiple
cycles. We have identified all hypercubes with two cyclic
attractors up to dimension seven (Table IV). The combined
length of two attractors was found to be less than the maximum
length of the single attractor in the cubes up to dimension
six. In dimension seven, the combined length reaches the
maximum length of the single cycle. An exhaustive search was
feasible up to dimension six, which implies that the results in
the table are indeed tight: there are no cubes with a combined
length of the two cycles exceeding those that are shown in the
table.

The above definitions for complex attracting sets in the
Glass networks give a rise to two novel combinatorial prob-
lems related to paths in hypercubes. The two problems can be
formulated as follows:

1) What is maximum number of non-dominated nodes in
hypercubes with an induced cycle of given length L?

2) What is the combined length of multiple induced cycles
in a cube of given dimension n?

The co-existence of a longest cyclic attractor and a non-
dominated node in the same model suggests that during
cell division, the gene network may traverse a maximum
possible number of different states before switching to the
final equilibrium. The combined length of the induced cycles
is an upper bound on the number of states of the multiperiodic
system.

IV. TRANSITION DIAGRAMS AND WIRING SCHEMES

A. Background on Wiring Schemes

Wiring schemes or interaction graphs are the most common
way to present information on the interaction between genes.
Formally, a wiring scheme is an oriented and labeled graph
whose vertices represent the variables of the system. The graph
specifies inhibiting and activating interactions between the
genes. We write g1 —→g2 if g1 activates g2, and g1 —•g2 if
g1 inhibits g2.

The wiring scheme can be interpreted as a description of
the information flow between the components. For the case of
Glass PLDE, the wiring scheme describes relations between
the individual bits of the binary codes that represent the
dynamics of the PLDE. Bits (genes) can be independent, and
when information is exchanged, this information flow may
be cyclic or cycle-free. In the context of Glass PLDE, a
wiring scheme therefore serves a similar purpose as a Tanner
graph [17].

The wiring scheme is often deduced by solving an inverse
problem for a chosen model of the system. The Glass PLDE
can serve as the underlying model if the experimental data
series are sufficiently long [34]. Nevertheless, a systematic
study of the interaction graphs related to PLDE is rarely
presented in the literature.9 In contrast, the wiring schemes of
ODE with continuous coefficients are widely studied and well
understood (see [16] for further references). The results can
be formulated in the form of conjectures that link equilibria
and periodic behavior of autonomous ODE to inhibiting and
activating patterns of the gene interaction.

B. A Comparison of ODE vs. PLDE

The gene interaction for ODE with continuous coefficients
is defined by the signs of the elements of Jacobian matrix
||J || of the system [16]. If Jij > (<)0, then gene j activates
(inhibits) gene i. The edges of the wiring scheme are labeled
by the sign of the corresponding Jacobian element. The wiring
scheme is said to have a positive (negative) circuit in a point x
of the state space if a product of Jij with cyclical permutation
of indexes (i, j) is positive (negative).

The conjectures about the circuits of the wiring schemes
have been formulated as follows:

1) The presence of a positive circuit (somewhere in the
phase space) is a necessary condition for multistationar-
ity.

2) The presence of a negative circuit of length at least two
(somewhere in the phase space) is a necessary condition
for stable periodicity.

We investigate whether these conjectures are valid in the
case of PLDE systems. As a first step, we identify the
differences between the modeling of gene interactions in
PLDE systems and in ODE with continuous coefficients.

9To the best of our knowledge, the only study addressing the link between
the phase flow of PLDE and their wiring scheme is presented in [35], [36].
The result presented in [35] states that if the wiring scheme is a cycle with
one negative interaction, it is always possible to construct a PLDE system
with stable periodic orbit. In [36], it was proved that in a subset of PLDE,
multistationarity implies existence of positive interactions between the genes.
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TABLE IV
THE CUBES WITH TWO CYCLIC ATTRACTORS

Dimension n max. length L First attractor Second attractor
length start node coordinate sequence length start node coordinate sequence

4 8 4 1111 4242 4 0010 4242
5 14 6 01010 153153 6 00100 513513
6 26 20 001110 26536156254356251245 4 000010 2626
7 48 24 0011000 124165716417347562574563 24 1111111 312517234523761571374562

In the PLDE, the Jacobian is not defined on the threshold
hyperplanes, and thus by definition, i—→j implies that an
increase of xi may lead to an increase of the kinetic rate of
protein production linked to µj at least at some point x in the
state space [35]. If the increase of the concentration leads to a
decrease of the kinetic rate, this is depicted as i—•j. For the
Glass PLDE, the definition is consistent with the definition of
the schemes for ODE with continuous coefficients, with two
noteworthy differences:

1) If the Jacobian-based definition is applied to the Glass
PLDE within the coordinate orthants, the wiring scheme
will contain self-inhibiting edges at every node of the
scheme whereas the definition of the PLDE wiring
scheme does not require any self-regulating edges.

2) In contrast to Jacobian-based schemes, which character-
ize the interactions for a given local point, the PLDE
wiring schemes present all local interactions on one
graph.

To analyze the conjectures above in the context of PLDE, we
need a definition of positive (negative) circuits in PLDE wiring
schemes that is consistent with the definition for ODE with
continuous coefficients and does not require the computation
of derivatives. We propose the following definition: a circuit is
called positive (negative) if the circuit contains an even (odd)
number of inhibiting edges.

We apply our encodings of hypercube paths to check
the conjectures for the Glass networks as follows: In Glass
networks, multistationarity in the phase flow is equivalent to
the presence of two or more equilibrium nodes in the oriented
hypercubes. If the hypercubes contain a cyclic attractor, the
Glass PLDE admits a stable periodic orbit. Therefore, a
classification of the hypercubes with equilibria and attractors
with respect to their wiring schemes could possibly provide a
counterexample for the conjectures.

It is known that the search over oriented hypercubes is
computationally demanding due to the rapid explosion of
the search space. For example, in the four dimensional case,
the number of the cubes reaches 232 and search is usually
performed using random sampling [19]. For our classification,
we obtain the set of hypercubes for a given wiring scheme as
a solution of a propositional satisfiability problem.

Our encoding is based on a set of independent Boolean
variables that define the labels of the nodes and orientations
of the edges (the details of the encoding are in the Appendix).
These variables are used to introduce a set of dependent
Boolean variables that represent the signs of focal points and
the interactions between the genes. The dependent variables
are defined as functions of the variables for the labels and the

orientations according to the definitions of the focal points and
the gene interactions. The wiring scheme of interest is encoded
as Boolean constraint such that satisfiable assignments identify
the transition diagrams of the networks. In the following, we
first suggest a number of applications and then discuss the
results of a full classification for gene networks with three
genes.

C. The Vulval Development of C. elegans

As an illustrative example, we have identified the transition
diagrams of the Glass networks with the wiring schemes that
represent the interactions of the genes of C. elegans presented
in [37]. The vulval development of C. elegans is an example
of a simple and very well-studied process of cell division,
which relies on a relatively small gene regulatory network.
The C. elegans vulva is developed from a set of precursor
cells, which are capable of adopting one of several fates.
The adopted fate depends on several intercellular signals that
affect the interactions of the genes. The experimental data
admits different interpretations of the interactions and a final
choice requires additional knowledge about the nature of the
interactions. This knowledge can be provided by fixing a
suitable model for the regulatory network.

If the Glass model is used to model the interactions, the
fates can be seen as equilibrium points of the Glass systems.
Consequently, reasoning about the cyclic attractors of the
possible Glass models allows us to make a choice between
two candidates for the regulatory network.

The literature suggests several alternative possibilities for
the gene interactions that explain the formation of the cell
patterns with two distinct fates [37]. The two interaction
graphs that can be deduced from these diagrams are given
in Figure 5.

LIN12

LET23

DSL

(a)

LIN12

LET23

DSL

(b)

Fig. 5. Two candidate wiring schemes for the vulval development of
C. elegans, derived from [37]

We performed a search over all 212 oriented 3D cubes with
the following constraints: 1) every edge of the wiring schemes
has to appear at least once and 2) no edges except those shown
are allowed. The search with our propositional satisfiability
encoding of the problem required 7 s (see Table VII in the
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Fig. 6. A unique cube complying to the wiring scheme in Fig. 5 (a). Signs
of focal points are given in brackets. Dimensions 1, 2 and 3 correspond to
signaling pathways DSL, LET23, and LIN12, respectively.

Appendix for the full results). The search shows that for the
scheme in Fig. 5 (a), there is only one transition diagram and
that it has two equilibrium nodes. This transition diagram is
given in Figure 6. The second wiring scheme (Fig. 5 (b)) was
found to admit two oriented cubes, each of which has a single
equilibrium node. These results indicate that the cell dynamics
of C. elegans with its two distinct stationary states cannot be
modeled using the second scheme.10

D. Wiring Diagrams With Variable Edges

An important property of gene networks is the ability of
interaction between two genes to change from inhibition to
activation and vice versa, depending on the expressions of
the genes [38]. In PLDE systems, the wiring schemes of
such networks will contain an edge that has different signs
in different nodes of the transition diagram. Following the
definition for ODE with continuous coefficients [16], we
shall call such edges variable edges. The presence or lack
of variable edges in a wiring scheme may serve as another
classification criterion for transition diagrams.

As an example of such a classification, we have computed
how many cyclic attractors induce wiring schemes with vari-
able edges. The variable edges in the schemes were identified
using the coordinate sequences of the equivalence classes of
the attractors obtained in [33]. The results for the attractors
are summarized in Table V and Figure 7. We found that the
relative number of the equivalence classes with variable edges
increases with an increasing length of the attractor, and that in
dimensions five and six, the wiring schemes of all attractors of
maximum period have variable edges. This result implies that
in the Glass model, stable periodic orbits of maximum length

10Observe that this conclusion is consistent with the multistationarity
conjecture, i.e., the first scheme has the positive circuit 1 —•2 —•1, which
manifests the necessary condition of multistationarity, whereas the second
wiring scheme does not have the circuits.
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Fig. 7. Classification of coils with respect to variable edges of wiring scheme
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(b) Boolean Glass network

Fig. 8. A sample Boolean Glass network with Hamiltonian path and its
wiring scheme.

cannot be described by the wiring schemes without variable
edges.11

Our satisfiability encoding provides a flexible tool for the
synthesis of transition diagrams with prescribed properties for
their wiring schemes. As an example, we constructed a four-
dimensional oriented cube with an oriented Hamiltonian cycle
where the wiring scheme does not contain any variable edges
(Fig. 8).

In order to further evaluate the scalability of our SAT-
based search, we have constructed five-dimensional oriented
hypercubes that conform to the wiring scheme in Fig. 9. This
wiring scheme is adopted from [39] and outlines relationships
among the principal molecular components of the cell cycle
engine during the cell division.

Since the scheme models periodic changes of the concentra-
tions of the cell proteins, we have implemented a search for the
transition diagrams that possess at least one simple or complex
cycle of a prescribed length. We encode the problem as a
propositional SAT formula. The encoding leaves the choice of
the orientation of the edges to the SAT solver. The orientations
are only constrained by the given wiring scheme: their choice
depends on the choices of incident edges and restrictions on

11Note that this classification of the attractors is based on the coordinate
sequences along the nodes of the attractors. It is possible to construct different
transition diagrams with attractors from the same equivalence class in such a
way that one of the diagrams induces a wiring scheme without variable edges
and the other one will have at least one variable edge.
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TABLE V
ATTRACTORS INDUCING WIRING SCHEMES WITH VARIABLE EDGES

Dimension Length #WS without variable edges %WS without variable edges #coils (total) #WS with variable edges
6 12 57 100 57 0

14 52 38 137 85
16 140 25 563 423
18 142 12 1228 1086
20 73 7 1032 959
22 7 1 478 471
24 4 4 110 106
26 0 0 4 4

5 10 10 100 10 0
12 2 40 5 3
14 0 0 3 3

4 8 3 100 3 0

Slp1

Ste9&

Rum1

Cdc2 &

Cdc13

SK

Wee1

Fig. 9. The wiring diagram of eukariotic cell division [39].

focal points dictated by a wiring scheme. We restrict the cube
to have a cycle of a prescribed length using the encoding of
simple cycles by Papadimitriou (see example 8.1 in [40] for
Hamiltonian cycles in arbitrary graphs). This simple cycle may
be a part of a complex cycle.

In order to identify how many cycles are in the resulting
hypercube, we employ a backtracking algorithm proposed by
Szwarcfiter and Lauer [41], which improves the asymptotically
fastest algorithm by D. B. Johnson [42]. We identify strongly
connected components using Tarjan’s algorithm [43]. The
results of the computations are summarized in Table VIII
(in the Appendix), listing all possible configurations (i.e., the
number of complex cycles and equilibria, see also Figure 10).
The results show that the algorithm is able to perform an
exhaustive search up to cycle length 32 in less than 16 hours
of CPU time.

Figure 10 and Table VIII (in the Appendix) present results
of the run of our algorithm on cubes complying to the scheme
in Fig. 9 for all lengths of cycles from 4 to 32.

E. A Full Classification for Networks With Three Genes

In Systems Biology, a classification of the networks in
lower dimensions is also desirable, owing to the possibility of
elucidating the fundamental links between the system dynam-
ics and the elements of complex gene interactions. In [16],
a full classification of the possible dynamics of ODE with
continuous coefficients with respect to the wiring schemes is
shown for two-gene networks. To the best of our knowledge,
there is no report of such a classification for the Glass PLDE
model.

As a first step of a comprehensive classification of the
Glass networks, we suggest to begin with the analysis of
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Fig. 10. Hypercubes with complex cycles and equilibria

three interacting genes. We have applied our SAT-based search
for the synthesis of the transition diagrams for all possible
wiring schemes with three non-variable edges. An exhaustive
conditional search was carried out assuming that in all wiring
schemes, every edge has to be enforced at least at one node
of the transition diagram and that there are no other edges
in the scheme except those shown. The schemes and their
diagrams are presented in the Appendix. We observe that the
full set comprises of 28 wiring schemes that comply with 67
oriented cubes. A total of 15 wiring schemes correspond to a
unique oriented cube, and not more than 4 cubes with the same
scheme can be constructed in the set. Furthermore, a total of
24 transition diagrams have simple or complex cycle and 10
among them include cyclic attractors. Single equilibrium nodes
were found in 39 cubes, whereas 14 diagrams possess two
equilibrium nodes. In those cubes with cyclic attractors and
double equilibrium nodes, the wiring schemes have negative
or positive circuits, respectively. Since in both cases of the
transitions in the diagrams express sufficient conditions for
the corresponding dynamics of the Boolean Glass PLDE,
we observe that the conjectures described above hold in all
Boolean Glass networks with equilibrium nodes and with
cyclic attractors.

While the cubes with cyclic attractors ensure the existence
of the Glass PLDE with stable periodic orbits along the
attractors, periodic phase flow may also exist in the networks
without cyclic attractors. In such networks, the analysis of
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the conjecture about periodic orbits requires an additional
step, as the criteria for periodic orbits [15] have to be
checked. For example, the wiring schemes 1 —→2 —•3 —•1
and 1 —→2 —→3 —→1 constitute positive circuits and are in-
duced by the transition diagrams with simple cycles of length
six (see Appendix). The existence of a Glass network with
a stable periodic orbit and one of these transition diagrams
would be a counterexample for the PLDE-version of the
conjecture.

V. CONSTRUCTION OF GLASS NETWORKS
WITH PERIODIC ORBITS

A. Criteria for Periodic Orbits

The construction of the Glass PLDE with periodic orbits
reported in the literature relies on random specification of the
focal coordinates [19] and subsequent numerical calculations
that check the criteria [15]. The conclusions based on the
calculations are limited by the rounding errors introduced
during the numerical procedure. In this final section, we
therefore suggest an algebraic method for the construction of
Glass PLDE with periodic orbits that avoids the complications
connected with numerical methods and the ambiguity of the
random choice of the focal points.

In the Glass model, the transition diagrams define only
the signs of the focal points of the Glass PLDE but do
not specify the phase flow unambiguously. A perturbation of
the absolute values of the focal coordinates may lead to a
bifurcation between periodic orbits and a flow converging to
the origin [1]. If the signs of the focal coordinates are fixed and
only absolute values of the coordinates are perturbed, the Glass
PLDE will possess the same transition diagram. We exploit
this observation to perform synthesis of Glass networks with
periodic orbits.

We assume that the given transition diagram has a cycle that
is meant to define a periodic phase flow. Our construction is
based on the criteria for periodic flow in the Glass PLDE [15].
Let L denote the length of the cycle, i.e., the number of
the nodes of this cycle. Let f+ = (f+(1), . . . ,f+(L)) be a
sequence of unknown absolute values of the focal coordinates
f (k) and let s = (sign(f (1)

i ), . . . , sign(f (L)
i )) be the sequence

of the signs of the coordinates defined by the given diagram.
Based on the criteria given in [15], we introduce the following
set of equalities and inequalities that are satisfied iff a periodic
flow exists:

1) Let y(k) denote the coordinate vector of a phase tra-
jectory when it crosses the face of the orthant that
corresponds to the hypercube edge connecting nodes k
and k+1. The coordinates are calculated iteratively [15]:

y
(k+1)
i =

f
(k)
i y

(k)
j − f (k)

j

y
(k)
j − f (k)

j

, (3)

where j indicates the variable that is switching on the
exit boundary for this orthant (i.e., y(k+1)

j = 0).
2) The faces of the orthant crossed by the flow along the

cycle are specified by

y
(k)
j = 0; O(k)ỹ(k) > 0 , (4)

where ỹ(k) is the vector y(k) without coordinate y(k)
j ,

and O(k) is the (n−1)×(n−1) diagonal matrix defining
the signs of the coordinates on the face of the orthant
with O(k)

ii = ±1. The system of inequalities written for
all k is equivalent to the returning cone condition [15]
that ensures flow along the nodes of the cycle.

3) Following the notation of [15], let A denote the matrix
that is associated with the Poincaré map on the starting
face of the orthant that is specified by the first node of
the hypercube cycle. If the Glass PLDE has a periodic
orbit along the cycle, the staring point y(1) is a fixed
point of the Poincaré map and is computed as follows:

y(1) =
(λ− 1)v
〈φ, v〉 , (5)

where λ and v is the eigenvalue and the eigenvector of
A, respectively, and the elements of the matrix A and
the vector φ can be analytically calculated as functions
of f+ for any given sign sequence s [15].

4) The eigenvalue has to be real and greater than unity:

λ > 1 . (6)

The additional condition that λ is the dominant eigen-
value guarantees asymptotic stability of the orbit.

The equalities and inequalities (3)–(6) can be seen as a
system of constraints on the set of n ·L unknown parameters
f

+(k)
i , and of n − 1 coordinates ỹ(1)

i of the fixed point. For
example, the inequality (6) does not require the computation of
the eigenvalue but serves as a constraint on the coefficients of
the characteristic polynomial |A−λE| = 0. If the system (3)–
(6) is consistent, there is a Glass PLDE that possesses a
periodic orbit, and any valuation of f+, ỹ(1) satisfying the
system defines both the Glass PLDE and the initial conditions
of the periodic orbit.

B. Experimental Results

We have conducted an experimental evaluation of the
method suggested above, utilizing the results of our classi-
fication of the three-dimensional Glass PLDE with 1-period
orbits. The search for an instance satisfying the system (3)–(6)
was implemented in Mathematica utilizing the subroutines for
cylindrical decomposition. The identification of the PLDE with
periodic orbits was carried out for three transition diagrams
with the cycles of length six shown in Figures 11, 12, and
13, respectively. Due to memory restrictions of the machine
used, the search was conducted only with two unknown focal
coordinates. The absolute values of all other focal coordinates
were fixed and of equal unity. Thus, the synthesis of the PLDE
was limited to the simultaneous perturbation of two focal
coordinates of a Boolean Glass network that was defined by
the given transition diagram. During the search, we checked
all 153 possible combinations of two perturbed coordinates,
out of 18 focal coordinates of the nodes of the cycles.

In the first two cases, the search resulted in 12 Glass PLDE
with periodic orbits, and in the third case (see Figure 13),
a total of 11 such networks were identified. Tables IX–XI
in the Appendix list the focal points of the PLDE and the
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Fig. 11. A wiring scheme with a positive circuit and the unique Boolean
Glass network complying to it. The network has a 6-coil (bold arrows) and
2 equilibria (100 and 011)
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(b) Boolean Glass network

Fig. 12. A wiring scheme with a positive circuit and the unique Boolean
Glass network complying to it.

initial conditions of the periodic orbits we found. Our results
indicate that the perturbation of two coordinates in other than
the listed cases cannot produce periodic orbits. In the third
case, four of 11 periodic orbits appeared to be asymptotically
stable. In the first two cases, all orbits found are asymptotically
unstable, and the results show that no stable orbits can be
constructed by any two-coordinate perturbation of the given
Boolean PLDE. Note that existence of a stable periodic orbit
in the first or in the second case would have contradicted the
conjecture about stable periodic solutions, as both the first and
the second wiring schemes are the positive circuits.

VI. CONCLUSION AND FUTURE WORK

The Glass PLDE model is frequently used as an approxi-
mate model in Systems Biology. The dynamics of Glass PLDE
can be formalized as paths through multi-dimensional binary
hypercubes. The dynamics of interest in Systems Biology cor-
respond to binary codes that are well studied in the information
theory literature, e.g., to snake-in-the-box codes or specific
circuit codes.

This paper reports results on the dynamics of Glass PLDE
that were obtained by means of classifications of the codes
that correspond to the Glass PLDE. We have introduced
two new classes of complex attracting sets for the Glass
PLDE, and have defined the corresponding cyclic codes. We
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(a) Wiring diagram
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(b) Boolean Glass network

Fig. 13. A wiring scheme and the unique Boolean Glass network complying
to it.

have also suggested a classification of the dynamics in Glass
networks with respect to their wiring schemes, which are a
standard model for the interaction among genes. By means of
a reduction of the search for the codes to a propositional SAT
instance, we have obtained a full classification of the cyclic
attractors up to dimension six for wiring schemes with three
genes and three interactions.

The paper also suggests a method for constructing the
Glass transition diagrams for a given wiring scheme. We
have applied this technique to a gene network regulating the
cell division of fission yeast. An algebraic method of the
construction of the Glass PLDE with periodic orbits along
given cycles of the transition diagrams was proposed and
tested. We conclude that results on hypercube paths can
contribute to the understanding of the complex dynamics of
biological systems.

Future Work

Impact of these observations in Systems Biology is hin-
dered by the fact that biological systems can easily contain
hundreds of genes; however, an exhaustive enumeration of the
corresponding circuit codes is clearly infeasible. We therefore
propose to investigate the implications of analytical results on
cyclic codes on the corresponding Glass PLDE.
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APPENDIX

From Interaction Graphs to Glass Models: Let us con-
sider a sample wiring scheme presented in Fig. 14 (a), in
which first gene is suppressed by the second g2 —•g1 and
is suppressing the third g1 —•g2. The only activating edge in
this scheme is g3 —→g2. In what follows, we show that the
Boolean Glass network presented in Fig. 14 (b) respects that
wiring scheme.

First, let us define signs of focal points for each orthant. For
an equilibrium point, like 100 or 011 in the figure, the signs
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Fig. 14. A sample Glass model corresponding to a given wiring scheme.

coincide with that of the orthant; otherwise, the rule is to invert
the sign if there is a possible flow along that direction (see
signs in brackets in Figure 14 (b)). In other words, focal point
at a given orthant is obtained by summing up the outgoing
vectors.

Then, a given edge in the cube does not violate the scheme if
changes in signs of orthant and focal point comply to a given
wiring scheme. For instance, consider the edge 000 → 100
enabling the first gene. The focal point of the target node
differs only in the third position. Its decrease indicates that
the first gene suppresses the third because the signs of orthants
and focal points change are different. If the wiring scheme in
Fig. 14 (a) had no edge g1 —•g3, such behaviour would be
depricated.

The rest of this section provides details of our SAT encoding
of hypercubes compliant to a given wiring scheme.

SAT encoding: Let us begin by introducing (2n · n)
Boolean variables that mimic coordinates of hypercube nodes:
the variable x̃i[j], where 0 ≤ i < 2n and 0 ≤ j < n,
denotes the j-th bit in the binary representation of node i
and is valuated correspondingly (in advance).

In our setting, the hypercube is fully connected, i.e., all
(n·2n−1) edges are present. Thus, there are (n·2n−1) variables
representing edges. A variable for an edge (a, b) is denoted as
ẽ(a, b).

Encoding focal points: Since every orthant has a focal
point associated with it, the number of Boolean variables we
need for the focal points is the same as the number of cube
nodes: f̃i[j], where 0 ≤ i < 2n and 0 ≤ j < n. Indeed, for

every hypercube node we have to store the sign of its focal
point w.r.t. every dimension. For every edge of the cube the
following constraint should be met:

ẽ(a, b)⇒
(
f̃a[k]⇔ f̃b[k]⇔ x̃b[k]

)
,

¬ẽ(a, b)⇒
(
f̃a[k]⇔ f̃b[k]⇔ x̃a[k]

)
where b is the node adjacent to a along k-th axis: b =
aneigh(k), i.e., the coordinates of a and b differ only in k-th
bit.

The interaction graph: The encoding of an interaction
graph W is done by following the adjacency matrix and
requires 4·|E(Kn)| variables (where Kn denotes an undirected
complete graph). The number of edges of a complete graph
over n nodes has to be doubled because we need two kinds
of edges: activating and suppressing. W̃actp,r and W̃supp,r,
0 ≤ p, r < n, directly mimic the provided interactions:

n−1∧
p=0

n−1∧
r=0,r 6=p


W̃actp,r if p—→r ∈W
¬W̃actp,r if p—→r /∈W
W̃supp,r if p—•r ∈W
¬W̃supp,r if p—•r /∈W

(7)

Compliance: For each edge of the n-cube the compliance
of changes in signs of coordinates and foci with the given
interaction graph is desired. That is, if the signs are opposite,
the wiring scheme has to contain the inhibiting edge and if they
are the same—the activating edge. As first step, we encode
the signs. For an edge (a, b), b = aneigh(k), and axes m 6= k,
0 ≤ m < n:

x̃k
inc ⇔ ¬x̃a[k] ∧ x̃b[k] , (8)

x̃k
dec ⇔ ¬x̃k

inc , (9)

f̃m
inc ⇔ ¬f̃a[m] ∧ x̃b[m] , (10)

f̃m
dec ⇔ f̃a[m] ∧ ¬f̃b[m] . (11)

Note that for many combinations of k and m Eqs. 10 and 11
are not triggered since the signs of focal points stay the same
during traversal (for the above example, a single focal point
changes its sign for every traversal of a hypercube edge, see
Table VI).

Then, activation and suppression predicates are enabled if
the signs of coordinates and focal points change accordingly:

ãct
k,m(a, b)⇔

((
x̃k

inc ∧ f̃m
inc

)
∨
(
x̃k

dec ∧ f̃m
dec

))
, (12)

˜supk,m(a, b)⇔
((
x̃k

inc ∧ f̃m
dec

)
∨
(
x̃k

dec ∧ f̃m
inc

))
. (13)

Here, ãct
k,m(a, b) indicates activation behavior between genes

k and m, which takes place if a change in the coordinate along
axis k has the same sign as the change in the focal point along
axis m. Similarly, the rules for suppression are modelled by
Eq. 13. The cube in Fig. 14 has a cyclic attractor, thus the
phase flow is unambiguous, and therefore each hypercube edge
infers one gene interaction only (see last column in Table VI).

Finally, we restrict activating and suppressing behavior to
take place only if allowed by the corresponding edge of the
interaction graph:

ẽ(a, b) ∧ ãctk,m(a, b) =⇒ W̃actk,m (14)

ẽ(a, b) ∧ ˜supk,m(a, b) =⇒ W̃supk,m . (15)
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TABLE VI
HYPERCUBE EDGES, CORRESPONDING CHANGES IN FOCAL POINTS AND INFERRED GENE INTERACTION

Coordinates change Focal point change Wiring scheme
000→ 100 (1+) [1,−1, 1] → [1,−1,−1] (3−) g1 —•g3

000→ 001 (3+) [1,−1, 1] → [1, 1, 1] (2+) g3 —→g2

001→ 011 (2+) [1, 1, 1] → [−1, 1, 1] (1−) g2 —•g1

001→ 101 (1+) [1, 1, 1] → [1, 1,−1] (3−) g1 —•g3

010→ 000 (2−) [−1,−1, 1] → [1,−1, 1] (1+) g2 —•g1

010→ 011 (3+) [−1,−1, 1] → [−1, 1, 1] (2+) g3 —→g2

101→ 100 (3−) [1, 1,−1] → [1,−1,−1] (2−) g3 —→g2

101→ 111 (2+) [1, 1,−1] → [−1, 1,−1] (1−) g2 —•g1

110→ 100 (2−) [−1,−1,−1] → [1,−1,−1] (1+) g2 —•g1

110→ 010 (1−) [−1,−1,−1] → [−1,−1, 1] (3+) g1 —•g3

111→ 011 (1−) [−1, 1,−1] → [−1, 1, 1] (3+) g1 —•g3

111→ 110 (3−) [−1, 1,−1] → [−1,−1,−1] (2−) g3 —→g2

Completeness: The formulae 14 and 15 specify compli-
ance of a hypercube traversals to a given interaction graph.
Hovewer, one needs to specify that every edge of a wiring
scheme is supported by some edge of the hypercube, what we
call completeness. In order to specify completeness, it has to
be asserted that at least one of the implications in Eqs. 14
or 15 is triggered:

W̃actk,m =⇒
2n−1∨
a=0

ẽ(a, aneigh(k)) ∧ ãctk,m(a, aneigh(k))

W̃supk,m =⇒
2n−1∨
a=0

ẽ(a, aneigh(k)) ∧ ˜supk,m(a, aneigh(k)) .

A satisfying assignment to a conjunction of the above formulae
provides us a desired Glass model. All models can be listed
using a specialized ALL-SAT solver, or by appending blocking
clauses for every solution found until UNSAT is reached.

Table VIII presents results of the run of our algorithm on
cubes complying to the scheme in Fig. 9 for all lengths of
cycles from 4 to 32. We have obtained all such cubes within
16 hours.
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His research interests include hardware design and verification, SAT-solving,
combinatorics, computational biology and hypercubes.

Daniel Kroening Daniel Kroening received the M.E. and doctoral degrees
in computer science from the University of Saarland, Saarbrücken, Germany,
in 1999 and 2001, respectively. He joined the Model Checking group in the
Computer Science Department at Carnegie Mellon University, Pittsburgh, PA,
in 2001 as a Postdoctoral researcher. He was an Assistant Professor at the
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TABLE VII
WIRING SCHEMES WITH 3 EDGES ALONG WITH TYPES OF GLASS NETWORKS COMPLYING TO THEM

g3

g2

g1

g3

g2

g1

g3

g2

g1

g3

g2

g1

bi-periodicity 6-attractor 6-coil, 2 equilibria 6-coil, 2 equilibria

g3

g2

g1

g3

g2

g1

g3

g2

g1

g3

g2

g1

6-attractor 1 equilibrium 1 equilibrium 1 equilibrium

g3

g2

g1

g3

g2

g1

g3

g2

g1

g3

g2

g1

4 cubes with 1 eq. 4 cubes with 1 eq. 4 cubes with 1 eq. 4 cubes with 1 eq.

g3

g2

g1

g3

g2

g1

g3

g2

g1

g3

g2

g1

4 cubes with 1 eq. 2 cubes with 4-coil + 1 eq., 2 cubes with 1 eq., 2 cubes with 4-coil + 1 eq.,
2 cubes with 4-attractor 2 cubes with 2 eq. 2 cubes with 4-attractor

g3

g2

g1

g3

g2

g1

g3

g2

g1

g3

g2

g1

2 cubes with 2 eq. bi-periodicity 1 cube with 2 eq. 1 cube with 2 eq.
2 cubes with 1 eq.

g3

g2

g1

g3

g2

g1

g3

g2

g1

g3

g2

g1

bi-periodicity bi-periodicity 2 cubes with 4-coil + 1 eq., 2 cubes with 4-coil + 1 eq.,
2 cubes with 4-attractor 2 cubes with 4-attractor

g3

g2

g1

g3

g2

g1

g3

g2

g1

g3

g2

g1

1 cube with 2 eq. 2 cubes with 2 eq., 1 cube with 2 eq. 2 cubes with 2 eq.,
2 cubes with 1 eq. 2 cubes with 1 eq.
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TABLE IX
PERIODIC ORBITS WITH WS: 1 —→2 —•3 —•1; FOCAL POINTS ALONG CYCLE IN TRANSITION DIAGRAM OF INITIAL BOOLEAN GLASS PLDE

f
(k)
i =((1, -1, 1), (1, 1, 1), (1, 1, -1), (-1, 1, -1), (-1, -1, -1), (-1, -1, 1)). THE SHOWN FIXED POINT IS LOCATED ON ORTHANT FACE

y∗1 < 0; y∗2 = 0; y∗3 < 0

perturbed focal coordinate: 1 2 fixed point coordinate y∗1 y∗3
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TABLE X
PERIODIC ORBITS WITH WS: 1 —→2 —→3 —→1; FOCAL POINTS ALONG CYCLE IN TRANSITION DIAGRAM OF INITIAL BOOLEAN GLASS PLDE

f
(k)
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y∗1 > 0; y∗2 < 0; y∗3 = 0

perturbed focal coordinate: 1 2 fixed point coordinate y∗1 y∗2
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TABLE XI
PERIODIC ORBITS WITH WS: 2 —•1 —→2 —→3; FOCAL POINTS ALONG CYCLE IN TRANSITION DIAGRAM OF INITIAL BOOLEAN GLASS PLDE
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perturbed focal coordinate: 1 2 fixed point coordinate y∗2 y∗3
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(−1+ 1
256 (343−

√
52113))(− 119

107+ 1
214 (343−

√
52113))

− 19
4 −

19
4 (− 119

107+ 1
214 (343−

√
52113))

−1+ 1
256 (343−

√
52113)

− 19
4 −

19
4 (− 119

107+ 1
214 (343−

√
52113))

f
(2)
3 = 5

4
f
(5)
1 = 25

32
− 29

605
− 3

605
Stable

f
(2)
3 = 13

8
f
(5)
3 = − 3

2
− 5

26
− 3

104
Stable

f
(2)
3 = 5

4
f
(6)
3 = 3

4

(−1+ 1
16 (19−

√
41))(−7+ 1

2 (19−
√

41))
−5−5(−7+ 1

2 (19−
√

41))
−1+ 1

16 (19−
√

41)
−5−5(−7+ 1

2 (19−
√

41))

f
(3)
1 = 13

8
f
(5)
3 = −2 − 5

41
− 4

41
Stable

f
(3)
1 = 5

4
f
(6)
3 = 3

4

(−1+ 1
20 (19−

√
41))(−7+ 1

2 (19−
√

41))
− 22

5 −
21
5 (−7+ 1

2 (19−
√

41))
−1+ 1

20 (19−
√

41)
− 22

5 −
21
5 (−7+ 1

2 (19−
√

41))

f
(3)
3 = − 3

32
f
(5)
1 = 1

4

(−1+ 1
256 (343−

√
52113))(− 166

67 + 1
134 (343−

√
52113))

− 585
64 −

793
128 (− 166

67 + 1
134 (343−

√
52113))

−1+ 1
256 (343−

√
52113)

− 585
64 −

793
128 (− 166

67 + 1
134 (343−

√
52113))

f
(3)
3 = − 3

4
f
(5)
3 = − 5

4

(5−
√

41)(−1+ 1
16 (19−

√
41))

−6−5(5−
√

41)
−1+ 1

16 (19−
√

41)
−6−5(5−

√
41)

f
(3)
3 = − 3

4
f
(6)
1 = − 5

4

(5−
√

41)(−1+ 1
20 (19−

√
41))

− 29
5 −

47
10 (5−

√
41)

−1+ 1
20 (19−

√
41)

− 29
5 −

47
10 (5−

√
41)

f
(3)
3 = − 3

32
f
(6)
3 = 1

8

(− 302
199+ 1

199 (331−3
√

10353))(−1+ 1
128 (331−3

√
10353))

− 45
4 −

61
8 (− 302

199+ 1
199 (331−3

√
10353))

−1+ 1
128 (331−3

√
10353)

− 45
4 −

61
8 (− 302

199+ 1
199 (331−3

√
10353))


